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Abstract

Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed
price per token. Consequently, one may think that the price two different users would pay for the same
output string under the same input prompt is the same. In our work, we show that, surprisingly, this is
not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary
and open-weights LLMs often generate the same (output) string with multiple different tokenizations,
even under the same input prompt, and this in turn leads to arbitrary price variation. To address the
problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation
that restricts LLMs to only generate canonical tokenizations—the unique tokenization in which each
string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling
algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural
language tasks demonstrate that canonical generation is comparable to standard generation in terms of
performance and runtime, and it solves the problem of tokenization multiplicity.

1 Introduction
Imagine you run an online service that offers AI-powered translation to help tourists seamlessly navigate
websites in languages other than their mother tongue. Behind the scenes, for each website the users visit,
your service sends the website’s text to a provider of an LLM and asks their model to generate the translation
in the mother tongue of the user. One day, reviewing your costs, you notice something strange: Hans and
Emma, two users of your service, visited the same page on a website with geographical fun facts, requesting a
German translation of the sentence

“The Acari River is a river of Minas Gerais state in southeastern Brazil”.

Both of them received the same translated text down to the last character, yet, you were charged different
amounts for each by the LLM provider. How can identical results have different costs?

The computational resources required to operate state-of-the-art large language models are too large for
most (enterprise) users to run them locally (Narayanan et al., 2021; Jiang et al., 2024). As a consequence, users
are relying on a growing market of cloud-based providers who offer access to such models via an application
programming interface (API) (Sun et al., 2022; La Malfa et al., 2024; Pais et al., 2022; Liagkou et al., 2024).
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The way that providers of LLM-as-a-service have come to charge the use of their models is heavily dependent
on one of the most distinctive technical characteristics shared by most, if not all, state-of-the-art models—they
process and generate information in discrete units called tokens.1 In particular, since the computational
resources required to process an input prompt and generate a response are directly proportional to the
number of tokens involved (Samsi et al., 2023; Fernandez et al., 2025), providers have predominantly adopted
a straightforward pay-per-token pricing model—users pay a fixed price per token.

Under the pay-per-token pricing model, one may naturally assume that, if i) two users submit the same
prompt to a provider, ii) the provider feeds the prompt into the same model, and iii) both users receive
exactly the same output string, then, they will pay the same price. In our work, we show that, surprisingly,
this assumption does not hold. We find empirical evidence that, particularly for non-english outputs, both
proprietary and open-weights LLMs often generate the same (output) string with different tokenizations,
even under the same input prompt, and this multiplicity of tokenizations in turn leads to price variation.
Moreover, since users derive value from the text that an output token sequence represents, rather than the
token sequence itself, we argue that this price variation is arbitrary and undesirable.

To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained
generation that restricts LLMs to only generate canonical tokenizations—the unique tokenization in which
each string is tokenized during the training process of an LLM (Geh et al., 2024). In doing so, we also
introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick that
leverages the following theoretical result, which may be of independent interest: to generate a canonical
tokenization, a model needs to generate (partial) canonical tokenizations at each step of the generation
process underpinning its functioning.

In addition to solving the problem of tokenization multiplicity, we show that, in comparison with standard
generation, the distribution of token sequences generated by canonical generation is provably closer to the
true distribution of token sequences used during training and, in practice, the performance and runtime of
canonical generation are comparable to standard generation. We have released all code and data used in our
experiments at: https://github.com/Networks-Learning/Tokenization-Multiplicity.
Further related work. Our work builds upon further related work on tokenization in LLMs, multilingual
LLMs, and the economics of LLM-as-a-service.

The study of tokenization has a rich history in natural language processing (Palmer, 2000; Jurafsky and
Martin, 2025). More recently, in the context of LLMs, there has been a renewed interest in formalizing
tokenization and analyzing its properties (Gastaldi et al., 2025; Phan et al., 2024; Rajaraman et al., 2025), with
the Byte-Pair Encoding (BPE) tokenization algorithm in particular receiving increased attention (Berglund
and van der Merwe, 2023; Zouhar et al., 2023; Kozma and Voderholzer, 2024). The impact of tokenization on
LLMs has also been studied empirically (Hou et al., 2023; Athiwaratkun et al., 2024) in generation tasks
involving foreign languages (Fujii et al., 2023), translation (Domingo et al., 2019), arithmetic (Singh and
Strouse, 2024), mental health (Liu et al., 2023), and privacy (Kharitonov et al., 2021; Petrov et al., 2023),
among others. Moreover, there is a recent line of work studying the impact of non-canonical tokenizations on
text perplexity calculations (Cao and Rimell, 2021; Chirkova et al., 2023; Geh et al., 2024; Vieira et al., 2025a;
Giulianelli et al., 2024), safety guidelines (Geh et al., 2025), downstream tasks (Zheng et al., 2025), and
image watermarking (Jovanović et al., 2025), as well as an effort to circumvent non-canonical tokenizations
occuring as a consequence of unusual input prompt endings (Guidance, 2023). Within this line of work, the
work most closely related to ours is by Vieira et al. (2025b), who have also independently proposed canonical
generation2. However, their work does not provide empirical evidence of tokenization multiplicity and its
influence on the pay-per-token pricing model as we do, their sampling algorithms for canonical generation are
computationally less efficient compared to ours, and their experimental evaluation does not demonstrate that
canonical generation is comparable to standard generation in terms of performance across natural language
tasks.

There has been extensive research on the capabilities of multilingual LLMs, including their performance
on downstream tasks (Fujii et al., 2023; Zhang et al., 2022; Rust et al., 2021) as well as their safety

1Tokens are (sub-)words, symbols and numbers that make up sentences and paragraphs.
2A preliminary version of our work and their work were posted on arXiv within three days of each other.
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vulnerabilities (Shen et al., 2024; Wang et al., 2024; Deng et al., 2024; Dong et al., 2025) across different
languages. Within this research, the work most related to ours is by Ahia et al. (2023), who have shown that
multilingual LLMs require more tokens to generate text of similar meaning in minority languages than in
english. Our work complements their work by providing empirical evidence that multilingual LLMs suffer
from tokenization multiplicity in minority languages.

The rapidly growing literature on the economics of LLM-as-a-service (Mahmood, 2024; Laufer et al.,
2024; Cai et al., 2025; Saig et al., 2024; Bergemann et al., 2025; Sun et al., 2025a,b; Artola Velasco et al.,
2025; Velasco et al., 2026) has predominantly focused on understanding the incentives providers may have
to act strategically at the expense of users. Within this literature, the work most closely related to ours is
by Artola Velasco et al. (2025), who show that token multiplicity enables an unfaithful provider to strategize
and misreport the tokenization of an output generated by a model they serve without raising suspicion.
Moreover, to eliminate the incentive to strategize, they propose an incentive-compatible pay-per-character
pricing model, which in turn also eliminates the price variation due to tokenization multiplicity. However, in
their work, they do not empirically demonstrate that token multiplicity can occur in practice, and it can lead
to arbitrary price variation even under faithful providers, as we do in our work. Further, it is worth noting
that the pay-per-character pricing model makes a provider’s profit margin vary across tokens, and this may
discourage its practical adoption.

2 Preliminaries
In this section, we first define and formally characterize (deterministic) tokenizers and canonical tokenizations.
Then, we briefly review the aspects of LLM training and generation that are relevant for our work.
Tokenizers and canonical tokenizations. Tokenizers are tools that operate on sequences of characters
(i.e., strings) and sequences of tokens, and can transform one type into the other. Formally, let Σ be a
finite set of characters and Σ+ be the set of all finite strings that can be created using the characters in Σ.
Similarly, let V be a finite set of tokens, which we will refer to as the vocabulary, and V + be the set of all
finite token sequences that can be created using the tokens in V . Then, a tokenizer T is characterized by a
tuple T := (Σ, V, enc, dec), where enc : Σ+ → V + is an encoder, which transforms strings to token sequences,
and dec : V + → Σ+ is a decoder, which transforms token sequences to strings.

Let σ be a string and s ∈ V + be a token sequence such that dec(s) = σ, then, we will say that s is a
(valid) tokenization of the string σ. Here, note that there may be multiple tokenizations of a string σ, that
is, there may exist s, s′ ∈ V + such that s ̸= s′ and dec(s) = dec(s′) = σ. However, given a string σ, the
encoder deterministically picks a single tokenization enc(σ) among all tokenizations of σ, which is often
called the canonical tokenization (Geh et al., 2024). For details on the most commonly used tokenization
algorithms—BPE (Gage, 1994; Sennrich et al., 2016), Unigram (Kudo, 2018) and Wordpiece (Song et al.,
2021)—refer to Appendix A.
LLM training and generation. During training, an LLM learns to predict the next token in canonical
sequences of tokens derived from raw text using a tokenizer. More formally, let ps = P [T | S = s] denote the
true distribution of the random variable T ∈ V , representing the next token given a (partial) token sequence
s ∈ V +. Then, the goal of LLM training is (typically) to minimize the (cross-entropy) loss between the
model’s predicted distribution ds ∈ ∆(V ) and the true next-token distribution ps.

During generation, an LLM takes as input a prompt sequence sq ∈ V + and responds with an output
sequence s ∈ V +, generated using an autoregressive process. At each time step of the process, the LLM
first takes as input the concatenation of the prompt sequence sq and the (partial) output sequence s, and
generates a distribution over tokens dsq ps ∈ ∆(V ). Then, it samples the next token t from the distribution
dsq ps and appends the token t to the output sequence s. The process continues until a special end-of-sequence
token is sampled. For the remainder of this paper, we will omit the prompt sequence sq from the notation
and write ds and ps for brevity.

Importantly, since LLMs are trained on finite data, the support of the distribution ds may differ from
the respective true distribution ps. As a result, it is possible for an LLM to generate a non-canonical token
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You are a helpful assistant that translates English text to German. Please provide only the translated text.

The Acari River is a river of Minas Gerais state in southeastern Brazil.

Der Acari-Fluss ist ein Fluss des Bundesstaates Minas Gerais in südöstlichen Brasilien.

26 tokens

28 tokens

Qwen2.5
7B-Instruct

Qwen2.5
7B-Instruct

Der Acari-Fluss ist ein Fluss des Bundesstaates Minas Gerais in südöstlichen Brasilien.

Figure 1: Translation task example. The top box shows the input prompt, which consists of a translation
instruction and the accompanying Wikipedia text to be translated. The latter two boxes show two outputs
generated by Qwen2.5-7B-Instruct as response to the input prompt, corresponding to the same string but
with two different tokenizations.

sequence, even if it has encountered no such sequences during training (Cao and Rimell, 2021; Chirkova et al.,
2023; Vieira et al., 2025a; Giulianelli et al., 2024; Geh et al., 2025).

3 Can Hans and Emma Receive Different Tokenizations for the
Same Output String?

We answer this question affirmatively. Using three simple natural language tasks, we demonstrate that
tokenization multiplicity can occur in both proprietary and open-weights LLMs. Specifically, we focus
on translation (as in the example of Hans and Emma in Section 1), spell checking, and rephrasing. The
motivation for these choices is that, in all these tasks, an LLM has to process and rewrite a given input text
and is therefore more likely to generate the same output string despite the randomness in its generation.

For each of the three tasks, we construct 100 input prompts using short texts from Wikipedia.3 For the
translation task, each prompt consists of a (system) instruction to translate a short text written in English to
one of 5 target languages, followed by the respective Wikipedia text in the English language. For the other
two tasks, each prompt consists of a (system) instruction to spell check or rephrase short texts written in 6
different languages (including English) and, for the spell checking task, we first introduce a small number
of typos in each Wikipedia text by replacing a few latin characters with other latin characters selected at
random. To simulate scenarios where different users ask an LLM to perform the same task on the same
input text, we feed each input prompt to the LLM 100 times, keeping all parameters identical except for the
random seed used during generation. We then focus on (the existence of) pairs of outputs whose strings are
identical but their tokenization lengths differ.

As a starting point, in Figure 1, we illustrate the translation task that we consider in our experiments
using as an example a pair of outputs generated by Qwen2.5-7B-Instruct (Yang et al., 2024) to the input
text introduced at the beginning of Section 1. We observe that, while both output pairs correspond to the
same string, Hans’s output consists of 26 tokens while Emma’s output consists of 28 tokens due to a difference
in the generated tokenization of the words “südöstlichen” and “Brasilien”. Importantly, these tokenization
differences cause the latter output to be 7.7% more expensive than the former under pay-per-token pricing.
For similar examples illustrating the spell checking and rephrasing tasks, refer to Appendix E.

Further, we proceed to quantify the frequency and magnitude of such inconsistencies in pricing across
different tasks, LLMs, and languages. In our experiments, we consider both proprietary LLMs from the gpt,
gemini, and claude families and open-weights LLMs from the Llama and Qwen families. For brevity, in the
remainder of the section, we use shortened names to refer to each model, and we provide the full names of all
models in Table 3 in Appendix F, along with additional details about the hardware, data, and APIs we use.4

3https://dumps.wikimedia.org/
4For (proprietary) gpt, gemini, and claude models, we used the official LLM-as-a-service APIs from OpenAI, Google, and

Anthropic, respectively. For open-weights models, we ran all experiments locally, however, note that a user without access to
specialized hardware would normally also access them via LLM-as-a-service APIs from third-party providers.
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Figure 2: Probability of tokenization multiplicity. The plots show the empirical probability that the
length of two output tokenizations to the same input prompt differ, conditioned on the output strings being
the same. Each panel corresponds to one of the three tasks we consider in our experiments involving outputs
in the German language. Across all panels, error bars represent 95% confidence intervals resulting from 100
input prompts.

We first look into the (conditional) probability that, once two users receive the same output string from
the model, the lengths of the two tokenizations differ. Formally, let S and S′ denote the random variables
corresponding to tokenizations received by two different users as a response after providing the same prompt,
i.e., Q = Q′. Our goal is to estimate the quantity P (len(S) ̸= len(S′) | dec(S) = dec(S′), Q = Q′). To this
end, for each prompt, we count the number of output pairs whose strings match but tokenization lengths
differ as a fraction of all output pairs whose strings match, and we take the average across prompts. Note that,
to perform fair comparisons across models, we intentionally focus on cases where there are differences in the
tokenization length rather than the tokenization itself, since the generated tokenization is not observable under
all APIs.5 Figure 2 summarizes the results for German language, which show that tokenization multiplicity
can indeed occur both when using open-weights and proprietary models. In particular, for all models except
gemini, we find cases of tokenization multiplicity in at least one task and, for open-weights models (i.e.,
Llama8b and Qwen7b), we find that tokenization multiplicity occurs regularly across all three tasks. Refer
to Appendix G.1 for qualitatively similar results in other languages. In this context, note that the gemini
model did generate a few (<1%) non-canonical outputs, which suggests that this model may also present
tokenization multiplicity, but we did not observe it due to the finite sample size of our experiments.6

Next, we focus on outputs where tokenization multiplicity does occur and look into the magnitude of
the variation in tokenization lengths, which directly determines the variation in prices charged to users
under pay-per-token pricing. Specifically, for each output string σ where there are at least two tokenizations
with different length, we measure the relative difference in length (and hence price) between the shortest
tokenization smin and the longest tokenization smax, i.e., (len (smax)− len (smin)) /len (smin). Figure 3
summarizes the results for German language, which show that, whenever tokenization multiplicity occurs, a
user may pay up to 15% higher price in comparison with another user for the same output string, with similar
levels of variation across both open-weights and proprietary models. Refer to Appendix G.1 for qualitatively
similar results in other languages.

Further, we analyze how the prevalence of tokenization multiplicity changes depending on the language
of the output. To this end, out of the 100 input prompts we construct per language and task, we measure
the number of prompts for which a model (here, gpt5m) generates at least two outputs with the same string
but different tokenization lengths. Figure 4 summarizes the results, which show that, across all three tasks,
tokenization multiplicity is more prevalent in minority languages. For example, even though ChatGPT

5The API services for gpt5m, gemini and claude return only the output string without disclosing the tokenization that was
generated. In those cases, it is still possible to identify differences in tokenization length, which is always disclosed since pricing
directly depends on it.

6Refer to Appendix G.1 for additional results showing the percentage of non-canonical outputs across all models and tasks.
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Figure 3: Magnitude of price variation. The plots show the empirical distribution of the relative
difference in length between the longest and shortest tokenization of each output string, across all outputs
where tokenization multiplicity occurs. Each panel corresponds to one of the three tasks we consider in our
experiments involving outputs in the German language. Across all panels, box plots show the quartiles of the
respective distributions with black horizontal lines representing median values.

officially supports languages such as Turkish or Swahili,7 we observed that at least 7% of the input prompts
for these two languages led gpt5m to generate identical outputs with different prices. For qualitatively similar
results with other models, refer to Appendix G.1.

To study the prevalence and magnitude of tokenization multiplicity, we have focused so far on pairs of
short outputs corresponding to exactly the same string, since this allows us to attribute any price variation
exclusively to token multiplicity. In this context, one may think that, on pairs of longer outputs with multiple
partial string matches, tokenization multiplicity may not lead to significant price variation if the difference
in tokenization length across partial matches cancels out. However, in what follows, we provide empirical
evidence that the difference in tokenization length is not independent across partial matches and, as a
consequence, the price variation due to token multiplicity may be more pronounced in longer outputs. In
particular, in outputs generated by gpt4om to the translation task from English to German, but using longer
Wikipedia texts (refer to Appendix F for details regarding the experimental setup), we find that, if a word is
generated with a non-canonical tokenization, then, subsequent occurrences of the word are typically generated
using that same tokenization. More specifically, we observe that, in 88% of those cases, all subsequent
occurrences (up to 10) are generated using the same non-canonical tokenization. In contrast, in 10% of the
remaining cases, all subsequent occurrences of the word are generated using the canonical tokenization and, in
the last 2% of cases, subsequent occurrences use a mix of both canonical and non-canonical tokenizations. As
an immediate consequence, it is easy to find examples of long, similar outputs containing multiple repetitions
of the same word with different but consistent tokenizations, as shown in Figure 6 in Appendix E.

4 Avoiding Tokenization Multiplicity through Canonical Generation
To solve the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained
generation that restricts LLMs to generate each output string with only its canonical tokenization. In
this context, we argue that, if one were to pick a single tokenization for each output string, the canonical
tokenization presents itself as the most natural choice. This is because, during the training of an LLM, all
strings in the training data are first encoded canonically using a tokenizer, and the LLM is then trained to
complete these canonical token sequences.

In what follows, we first show that, for an output token sequence generated by an LLM to be canonical,
the partial token sequences generated at each step of generation must also be canonical. Building upon this
result, we then introduce an efficient and easy-to-implement sampling algorithm for canonical generation
based on the Gumbel-Max trick (Huijben et al., 2022). Finally, we conclude by analyzing both theoretically

7https://help.openai.com/en/articles/8357869
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Figure 4: Tokenization multiplicity across languages. The plots show the number of inputs prompts for
which we observe at least two outputs given by gpt5m with the same string but different tokenization lengths.
Each panel corresponds to one of the three tasks we consider in our experiments and pairs of letters on the
x-axis correspond to different languages. Refer to Table 2 in Appendix F for details regarding the languages
we use and to Appendix G.1 for qualitatively similar results using other models.

and empirically the quality of the outputs generated by canonical generation against those generated by
standard generation, as well as the runtime of our sampling algorithm.

4.1 Subsequences of Canonical Token Sequences Must Also Be Canonical
In this section, we establish our main theoretical result, which shows that the most commonly used tokenizers—
BPE, Unigram, and Wordpiece—are non-recovering tokenizers.

Definition 1. A tokenizer T = (Σ, V, enc, dec) is called non-recovering if it holds that, for any non-canonical
token sequence s ∈ V + according to T and any token t ∈ V , s p t is also non-canonical.

More formally, we have the following theorem:8

Theorem 2. BPE-, Unigram- and Wordpiece-based tokenizers are non-recovering.

This theorem immediately implies that an output token sequence is canonical if and only if the partial
token sequences generated at each step of the generation process are canonical. Moreover, this theorem also
provides a plausible explanation for the empirical observation that the likelihood that an LLM generates
non-canonical output sequences increases with the length of the sequence (Geh et al., 2024). This is because,
since sampling a “non-canonical token” once during the generation process is sufficient to render the output
token sequence non-canonical, it is natural that the chances of this to happen increase with the number of
sampled tokens.

In this context, we find it rather surprising that the above theorem holds for BPE, Unigram and Wordpiece
since these (deterministic) tokenizers use fundamentally different tokenization techniques: BPE uses a rule
based approach, Unigram maximizes the probability of the tokenization, and Wordpiece greedily encodes the
text to minimize the number of tokens.

4.2 An Efficient Sampling Algorithm for Canonical Generation
Building upon Theorem 2, we now introduce canonical generation, along with an efficient sampling algorithm
to implement it. The core principle of canonical generation is to ensure that the sampled tokens at all steps
of the generation are such that the respective (partial) output remains canonical. To this end, at each step, it
sets the probability of a subset of tokens to zero—those that, when appended to a partial output sequence,

8The proof for Theorem 2 can be found in Appendix B. In Appendix C, we also prove that, under mild conditions, the
theorem holds when using pretokenization.
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Algorithm 1 Canonical Generation via Gumbel-Max Sampling
Require: next-token distribution ds
ut ∼ Gumbel(0, 1) for all t ∈ V
for t ∈ V in decreasing order of log(ds(t)) + ut do

if s p t is canonical then
return t

end if
end for

would result in a non-canonical token sequence—and redistributes their probability mass to the remaining
tokens proportionally to their original probability mass.

Formally, let ds denote the next-token distribution generated by the LLM given a partial output token
sequence s and let ds(t) denote the probability of sampling a token t from this distribution. Given the partial
output token sequence s, an LLM using canonical generation draws the next token in the generation process
from a canonicalized next-token distribution

d̃s(t) :=

{
ds(t)/Z if s p t is canonical
0 otherwise,

(1)

where Z =
∑

t∈V : spt is canonical ds(t) is a normalization constant that ensures that d̃s is a valid probability
distribution. In that context, note that redistributing the probability mass of tokens that would lead to
non-canonical token sequences proportionally to the original probabilities ds(t) is a natural choice we make,
inspired by other popular strategies for (stochastic) generation, such as top-k and top-p sampling (Holtzman
et al., 2020), and constrained generation (Beurer-Kellner et al., 2024).

Next, we introduce an efficient and easy-to-implement algorithm to sample from the canonicalized next-
token distribution d̃s, which avoids explicitly computing the entire distribution d̃s. The algorithm starts by
sampling a value ut ∼ Gumbel(0, 1) from a Gumbel distribution for each token t ∈ V . Then, it ranks the
tokens in decreasing order with respect to the perturbed log-probability log(ds(t))+ut. Finally, it returns the
token t with the largest value of log(ds(t))+ut such that s p t is canonical. The overall procedure, summarized
in Algorithm 1, relies on a property of the Gumbel-Max trick (Maddison et al., 2014; Huijben et al., 2022),
which states that the argmax operation over a constrained subset of categorical outcomes is equivalent to
sampling from a categorical distribution with zero probability for all outcomes outside the subset, and with
the probabilities of the outcomes in the subset scaled proportionally to their original probabilities, as shown
in Eq. 2 in Maddison et al. (2014). Hence, it readily holds that Algorithm 1 returns a valid sample from the
canonicalized next-token distribution d̃s defined in Eq. 1, i.e.,

argmax
t∈V : spt is canonical

{log(ds(t)) + ut} ∼ d̃s.

Further, it is worth highlighting that, in contrast to computing the canonicalized next-token distribution d̃s,
which requires evaluating the canonicity of |V | token sequences, Algorithm 1 requires only a few evaluations
of canonicity. This is because, in practice, LLMs tend to generate mostly canonical token sequences (Geh
et al., 2024), hence, the probabilities ds(t) generated by an LLM for tokens t that lead to non-canonical
sequences s p t are usually small. More specifically, let ds(canonical) be the probability mass on the subset
of tokens that lead to canonical sequences, i.e., ds(canonical) =

∑
t∈V : spt is canonical ds(t), then Algorithm 1

requires, in expectation, fewer than 1/ds(canonical) evaluations of canonicity before successfully sampling
the next token. That is because, unlike (independent) rejection sampling from ds, which would require in
expectation exactly 1/ds(canonical) evaluations of canonicity until a token that leads to a canonical sequence
is successfully sampled, our approach never checks the same token twice, which results in an increase in the
success probability of sampling a token that leads to a canonical sequence after each failed attempt.9

9The number of evaluations of canonicity in rejection sampling is distributed according to a geometric distribution with
success probability ds(canonical) resulting in 1/ds(canonical) evaluations in expectation until a successful sample.
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Task Metric Llama8B Qwen7B

Standard Canonical Standard Canonical

Translation
Quality score 0.72± 0.02 0.70± 0.02 0.73± 0.01 0.71± 0.01
Time per token (s) 0.019 0.020 0.018 0.019
Non-canonicity rate 6% - 18% -

Spell Checking
1 − edit distance 0.62± 0.04 0.61± 0.04 0.74± 0.04 0.72± 0.04
Time per token (s) 0.020 0.023 0.018 0.018
Non-canonicity rate 10% - 19% -

Rephrasing
Cosine similarity 0.84± 0.02 0.84± 0.02 0.89± 0.02 0.88± 0.02
Time per token (s) 0.020 0.020 0.018 0.020
Non-canonicity rate 6% - 5% -

MGSM
Accuracy 0.37± 0.06 0.37± 0.06 0.63± 0.05 0.62± 0.06
Time per token (s) 0.020 0.021 0.018 0.020
Non-canonicity rate 22% - 29% -

Table 1: Performance, (generation) time per token, and non-canonicity rate. The results comprise
pairs of outputs generated with standard and canonical generation in German language under the same
source of randomness. For the time per token, confidence intervals are not shown, as they were all smaller
than 10−4.

The simplest way to test whether the sequence s p t is canonical is to compute and check if enc(dec(s p
t)) = s p t. For BPE-based tokenizers however, it has been shown that it is sufficient to test if enc(dec(tlast p
t)) = tlast p t, where tlast is the final token in s. In fact, a recently proposed efficient algorithm to test whether
s p t is canonical only partially applies the BPE algorithm to dec(tlast p t) (Vieira et al., 2025b; Hayase et al.,
2025).

4.3 Performance of Canonical Generation
We first show that, in comparison with standard generation, the distribution of tokens generated by canonical
generation is provably closer to the true distribution of sequences that the LLM has seen during training.
Formally, let p denote the true distribution over token sequences s ∈ V + used during training, for which
note that p(s) = 0 holds for all sequences s that are non-canonical. Moreover, let d denote the distribution
over token sequences that the LLM generates using standard generation, and d̃ the distribution over token
sequences that the LLM generates using canonical generation, that is, sampling from the canonicalized
next-token distribution d̃s given by Eq. 1 at each step of the generation process. Then, the following theorem
shows that p is likely to be closer to d̃ than d in terms of KL-divergence, a result independently established
in Proposition 3 of Vieira et al. (2025b):10

Theorem 3. Let d be absolutely continuous11 with respect to p. Moreover, assume that there exist s ∈ V +

and t1, t2 ∈ V such that s p t1 is non-canonical with d(s p t1) > 0 and s p t2 is canonical with p(s p t2) > 0 and
d(s p t2) > 0. Then, it holds that

KL(p, d̃) < KL(p, d). (2)

In simpler terms, the two conditions under which canonical generation brings the output token sequences
closer to the true distribution are that (i) there exist non-canonical token sequences with positive probability
of being generated under d so that their probability mass can be redistributed, and (ii) there exist canonical

10The proof for Theorem 3 can be found in Appendix D.
11Absolute continuity is required for the KL-divergence to be well defined, i.e., we require that d(s) = 0 implies that p(s) = 0

for all s ∈ V +.
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token sequences with positive probability under d and p so that the redistribution of probability mass in
d̃ is beneficial. To understand the intuition behind Theorem 3, note that, by using canonical generation
(i.e., sampling from d̃ instead of d), the probability that an LLM generates non-canonical token sequences
becomes zero, and the probability that it generates any other (canonical) token sequence increases under d̃.
Further, since only canonical token sequences have positive probability under the true distribution p, this
redistribution of probability mass from non-canonical token sequences to canonical ones can only bring the
distribution d̃ closer to the true distribution p compared to d.

On the flip side, it is important to clarify that a similar property does not necessarily hold for the respective
distributions over strings. That is, using canonical generation, the distribution of output strings, resulting
from decoding the output token sequences, is not guaranteed to be closer (in terms of KL-divergence) to
the true distribution of output strings used during training. Formally, let pdec = Ps∼p(s)[dec(s)] be the true
distribution over strings, ddec = Ps∼d(s)[dec(s)] be the distribution of strings induced by the distribution of
output token sequences d, and d̃dec = Ps∼d̃(s)[dec(s)] be the distribution of strings induced by the distribution
of output token sequences d̃. Then, we have that

KL(pdec, d̃dec) =

=
∑

σ∈Σ+

pdec(dec(s) = σ) ln

(
pdec(dec(s) = σ)

d̃dec(dec(s) = σ)

)
=

∑
enc(σ),σ∈Σ+

p(s = enc(σ)) ln
(
p(s = enc(σ))

d̃(s = enc(σ))

)

=
∑

s∈V +: s is canonical

p(s = s) ln

(
p(s = s)

d̃(s = s)

)
= KL(p, d̃)

because there is a one-to-one mapping determined by the encoder enc from any string to a canonical token
sequence, and only canonical token sequences have positive probability under p and d̃. In contrast, one cannot
claim the same for KL(pdec, ddec) and KL(p, d), as the same string can have multiple tokenizations that have
positive probability under d. Thus, we cannot conclude that KL(pdec, d̃dec) < KL(pdec, ddec).

Next, given this theoretical gap and since users typically derive value from the string that the output
token sequence represents rather than the token sequence itself, we empirically compare the performance and
efficiency of canonical and standard generation on the same three tasks from Section 3 (i.e., translation, spell
checking, and rephrasing), as well as a standard benchmark for multilingual LLM evaluation (i.e., MGSM),
using (open-weights) Llama and Qwen models.12 To this end, we first sample 100 pairs of outputs per input
prompt using standard and canonical generation with the same source of randomness, following Corvelo
Benz et al. (2026). Then, we identify the pairs in which the output generated using standard generation are
non-canonical, which are the only ones in which standard and canonical generation differ (under Gumbel-Max
based sampling), and measure performance and time per token by (re-)sampling 10 continuations from
the token in which the output became non-canonical under standard generation using both standard and
canonical generation on each corresponding output (again with the same source of randomness).

To measure performance, we use (i) a quality score provided by a pre-trained neural network for reference-
free translation evaluation (Guerreiro et al., 2024) in the translation task, (ii) the (normalized) Levenshtein
edit distance (Levenshtein, 1966) between the generated text and the original text without typos in the spell
checking task, (iii) cosine similarity of sentence embeddings (Reimers and Gurevych, 2019) of the original and
rephrased text in the rephrasing task, and (iv) average accuracy in the MGSM task. Refer to Appendix F for
additional details regarding the experimental setup.

Table 1 summarizes the results for the German language, which show that both canonical and standard
generation are comparable both in terms of performance and efficiency. Here, the slightly lower performance

12In our experiments, for standard generation, we sample from the next-token distribution ds(t) using the default categorical
sampler in PyTorch, which is an implementation of Gumbel-Max sampling.
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of canonical generation can be attributed to a limitation shared by constrained generation in general, namely,
occasionally restricting the sampling space to low probability generation paths (Vieira et al., 2025b). Refer
to Appendix G.2 for qualitatively similar results in other languages.

5 Discussion and Future Work
In this section, we highlight several limitations of our work and discuss avenues for future research.
Tasks and languages. Our experiments provides strong empirical evidence that tokenization multiplicity
can occur on three natural language tasks, particularly in non-english languages. However, it would be
interesting to study tokenization multiplicity on additional tasks. Moreover, it would be interesting to
investigate whether commonly used practices to improve multilingual language generation, such as fine-tuning
on different languages, using a different tokenizer per language, or using specialized models trained on mostly
non-English text, may reduce the prevalence of tokenization multiplicity.
Methodology. Our main theoretical result (Theorem 2) reveals that, for BPE-, Unigram- and Wordpiece-
based tokenizers, subsequences of canonical token sequences must also be canonical. It would be very
interesting to better understand what property a tokenizer needs to satisfy for our result to hold. In this
context, it would also be interesting to define relaxed notions of canonical tokenization applicable to stochastic
tokenizers (Kudo, 2018; Provilkov et al., 2020), and adapt our theoretical result to this type of tokenizers.

Further, under canonical generation, we canonicalize the next-token distribution by redistributing the
probability mass of tokens leading to non-canonical token sequences among the remaining tokens proportionally
to their original probability mass. We have shown that, in comparison with the original next-token distribution,
this particular canonicalized next-token distribution leads to a distribution of output sequences that is closer
to the true distribution of token sequences. However, we have found that, in practice, canonical generation
has slightly lower performance than standard generation. In future work, it would be worth to investigate
global strategies beyond (next-token) sampling to redistribute the probability mass of non-canonical output
token sequences to achieve better practical performance.

6 Conclusions
We have presented empirical evidence that, particularly for non-english outputs, both proprietary and
open-weights LLMs often generate the same (output) string with different tokenizations, even under the same
input prompt, and this multiplicity of tokenizations in turn leads to arbitrary, undesirable price variation.
To address the problem of tokenization multiplicity, we have proposed canonical generation, a type of
constrained generation that restricts LLMs to only generate the canonical tokenization of any output string,
and introduced a simple and efficient sampling algorithm based on the Gumbel-Max trick to implement it.
Further, we have shown that, in comparison with standard generation, the distribution of token sequences
generated using canonical generation is provably closer to the true distribution of token sequences used during
training, and the performance and runtime of LLMs using either method are comparable.
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A Tokenization Algorithms
There exists many tokenization algorithms to construct the set of tokens V , the encoder enc, and the
decoder dec characterizing a tokenizer T . In the following, we review three popular tokenization algorithms,
BPE (Gage, 1994; Sennrich et al., 2016), Unigram (Kudo, 2018) and Wordpiece (Song et al., 2021). We also
discuss pretokenization, a preprocessing technique used to partition larger bodies of text before tokenization.

A.1 The BPE tokenization algorithm
The BPE tokenization algorithm (Gage, 1994; Sennrich et al., 2016) is used by most, if not all, state-of-the-art
LLMs. In a nutshell, the BPE algorithm aims to create a tokenizer T with a set of tokens V corresponding to
character sequences that appear frequently in a training set of strings C. To this end, it proceeds as follows.

In an initialization phase, the algorithm sets i) Σ to be the set of all characters that appear at least once
in C, ii) V to be the set of single-character tokens, that is, for each c ∈ Σ, there exists one and only one t ∈ V
such that dec(t) = c, and iii) S to be the set of single-character token sequences s ∈ V + representing all
strings in C. After the initialization phase, the algorithm proceeds iteratively for a predetermined number of
iterations. At each iteration, it looks for the pair of tokens t, t′ ∈ V whose concatenation t p t′ appears most
frequently in the set of token sequences S, it creates a new token t ◦ t′, where the symbol ◦ denotes the merge
operation and dec(t ◦ t′) = dec(t) p dec(t′), and it adds the newly created token to V . Then, for each token
sequence s ∈ S, it replaces all occurrences of t p t′ by t ◦ t′ one by one. Lastly, it creates a merge rule rt,t′ ,
which specifies the replacement of t p t′ with t ◦ t′, and adds it to an ordered sequence of merge rules R.

After termination, the algorithm defines the encoder enc and decoder dec as follows. For any given token
sequence s ∈ V +, dec(s) transforms the sequence to a string one token at a time, in order, using the token
definitions. For any given string σ ∈ Σ+, enc(σ) first transforms the string to a sequence of single-character
tokens. Then, it merges consecutive tokens from this sequence following the merge rules from R, in order,
until no merge rule is applicable, and it returns the resulting sequence—the canonical sequence.13

A.2 The Wordpiece tokenization algorithm
The Wordpiece algorithm is similar to BPE, in the sense that it builds the token vocabulary by iteratively
merging tokens. However, the initialization phase, the merging criterion and the encoding function differ.

In the initialization phase, Σ is set to contain all characters that appear at least once in the training set of
strings C. Then, for each character c ∈ Σ that appears at least once in C, a single-character token t is added
to V such that dec(t) = c, and S is initialized as a set that contains all single-character token sequences
s ∈ V + that represent all strings in C. Interestingly, Wordpiece transforms characters (and substrings) inside
words differently than characters (and substrings) at the beginning of words. Specifically, tokens representing
characters (and substrings) inside words have a special prefix.

To build the vocabulary, Wordpiece proceeds iteratively by merging existing tokens and adding them
to V until it reaches a predetermined size, similarly to BPE. However, the criterion to select which pair of
tokens to merge is different. If freq(s′) denotes the number of times that sequence s′ ∈ V + appears (as a
subsequence) in the set of sequences S, Wordpiece looks for the pair of tokens t, t′ ∈ V that maximizes the
value of freq(tpt′)

freq(t)·freq(t′) . Then, a new token t ◦ t′ is added to V , where dec(t ◦ t′) = dec(t) p dec(t′), and all
occurences of t p t′ in each token sequence s ∈ S are replaced by t ◦ t′. With this criterion, Wordpiece prefers
to merge tokens whose concatenation appears commonly in S, but they are not common individually.

After the above iterative process terminates, the algorithm defines the encoder and decoder functions as
follows. For any token sequence s = t1 p · · · p tn ∈ V + with n ∈ N, the decoder returns dec(s) = dec(t1) p
· · · p dec(tn) using the token definitions. Any string σ = c1 p · · · p cm ∈ Σ+, m ∈ N given to the encoder is
tokenized greedily from left to right, each time selecting the token in the vocabulary that represents the most
characters starting from the beginning of the string. Specifically, the first token in enc(σ) is the token t ∈ V
such that dec(t) = c1 p · · · p ci, with i ≤ m, and ∄t′ ∈ V such that dec(t′) = c1 p · · · p cj with i < j ≤ m. In
the above selection, if c1 is inside a word, then t must contain the special prefix. This process continues in
the same manner with the remaining string ci+1 p · · · p cm.

13If t p t′ appears multiple times in a token sequence, the merge rule rt,t′ is applied in order of appearance in the sequence.
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A.3 The Unigram tokenization algorithm
The Unigram algorithm aims to create a tokenizer T with a set of tokens V in order to minimize a loss when
tokenizing a training set of strings C. In the initialization phase, Σ is set to contain all the characters that
appear at least once in C. Unlike the BPE algorithm, which iteratively adds tokens to the vocabulary V ,
Unigram starts with a large vocabulary and removes tokens from it until it reaches a predetermined size.
This initial large vocabulary can be set in multiple ways, such as applying the BPE algorithm on C with
many iterations, or initializing it with tokens that decode to the most frequently occuring substrings in C.

After the initial vocabulary has been set, the algorithm proceeds in iterations, each time computing a
loss over the strings in C and the current vocabulary, and removing a batch of tokens from the vocabulary
(typically 10% or 20% of tokens) whose removal minimizes this loss. In each iteration, every token t in the
current vocabulary V is assigned a probability score r(t) = freq(t)∑

t′∈V freq(t′) , where freq(t) denotes the number
of times that the token t appears in all possible tokenizations of the strings in C. For each token t ∈ V , the loss
over the training set is computed as

∑
σ∈C − log(rV \{t}(σ)), where rV (σ) = maxs∈V +,dec(s)=σ r(s) denotes

the probability score of the most likely tokenization of σ under vocabulary V , and the probability score of
tokenization s = t1 p · · · p tn, with n ∈ N, is simply r(s) = r(t1) . . . r(tn). The tokens that minimize this loss
are removed from the vocabulary and the process repeats until the vocabulary reaches a predetermined size.

After the vocabulary has been finalized, the encoder is set to tokenize a string σ ∈ Σ+ by finding its most
likely tokenization under the final vocabulary V , i.e., enc(σ) = argmaxs∈V +,dec(s)=σ r(s), using the Viterbi
algorithm (Viterbi, 1967), and the decoder decodes all tokens in V the same way as in the original, large
vocabulary.
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B Proof of Theorem 2
In this section, we prove Theorem 2 by showing individually that each tokenization algorithm—BPE,
Wordpiece, and Unigram—builds tokenizers which are non-recovering.

B.1 BPE-based tokenizers are non-recovering
In order to show that BPE-based tokenizers are non-recovering, we define some additional notation regarding
the BPE tokenization algorithm.

When tokenizing a string σ = c1 p · · · p cn, with ci ∈ Σ and n ∈ N, according to the BPE algorithm,
we use the term merge and write m = (rt,t′ , i, j) to refer to a single application of merge rule rt,t′ ∈ R on
two consecutive tokens t p t′ that correspond to the substring of characters ci p · · · p cj in σ. To tokenize
σ, merges are performed following a unique merge sequence M = (m1, . . . ,m|M |), where the merges are
ordered m1 ≺ · · · ≺ m|M |, first by the order in which the merge rule they refer to appears in R, and second
by position of merged token pairs in the sequence. The notation m ≺ m′, for m = (r, i, j),m′ = (r′, i′, j′)
with r, r′ ∈ R, i, j, i′, j′ ∈ [n], means that either r appears before r′ in R, or r = r′ and i < i′.

We now define an operator that, applied to a merge sequence M that tokenizes the string σ, specifies
the subsequence of merges that are applied to a certain substring of σ. Further, we define shift equivalence,
referring to merge sequences whose merges correspond to the exact same merge rule sequence applied to
different positions in a string (shifted by a constant).

Definition 4. Let s = t1 p · · · p t|s| ∈ V + be a tokenization of σ = c1 p · · · p c|σ| ∈ Σ+ obtained by applying
merge sequence M = (m1, . . . ,mn). For any continuous token subsequence s′ of s spanning the substring
σ′ = cu p · · · p cv, 1 ≤ u < v ≤ |σ|, the operator [M ]s′ denotes the subsequence of merges in M such that
m = (r, i, j) ∈ [M ]s′ if m ∈ M and u ≤ i < j ≤ v.

Definition 5. Two merge sequences M = (m1, . . . ,m|M |), M ′ = (m′
1, . . . ,m

′
|M ′|) are shift equivalent,

denoted by M
→≡ M ′, if |M | = |M ′| and there exists n ∈ Z such that for all i ∈ {1, . . . , |M |} with mi = (r, j, k),

r ∈ R, k > j > 0, it holds that m′
i = (r, j + n, k + n).

Before we prove that BPE-based tokenizers are non-recovering, we show that the merge sequence that
creates the tokenization s = s1 p · · · p sn from a string σ, can be partitioned into n disjoint (non-continuous)
subsequences of merges, that create the tokenizations s1, . . . , sn from the corresponding substring of σ.

Lemma 1. Let s ∈ V + be a tokenization of σ = c1 p · · · p c|σ| ∈ Σ+ obtained by applying merge sequence Ms.
For any partition s = s1 p · · · p sn, where si ∈ V +, i ∈ [n], n ∈ N, the following hold:

1. For each si ∈ s, there exists a merge sequence Msi such that applying Msi to the string dec(si) creates
si and [Ms]si

→≡ Msi .

2. For all si, sj ∈ s, i ̸= j, if m ∈ [Ms]si then m /∈ [Ms]sj and vice-versa,

3. For each merge m ∈ Ms there exists si ∈ s such that m ∈ [Ms]si .

Proof. 1. If si is a tokenization of a single character dec(si) = c, then [Ms]si is the empty sequence
and the statement holds trivially. Assume si is a tokenization of the substring cu p · · · p cv of σ,
with v > u > 0, and [Ms]si = (m1, . . . ,mn). By Definition 4, all merges m = (r, j1, j2) ∈ Ms with
u ≤ j1 < j2 ≤ v belong in [Ms]si , so these merges tokenize cu p · · · p cv into si. Then, the merge sequence
Msi = (m′

1, . . . ,m
′
n), where for all k ∈ [n] it holds that mk = (r, j1, j2) and m′

k = (r, j1 − u, j2 − u),
r ∈ R, contains the same merge rules in the same order, but with indices shifted left by u. So if Msi is
applied to the string dec(si) it will create si.

2. If [Ms]si or [Ms]sj are the empty sequence, meaning si or sj are a tokenization of only a single character
in σ, then the statement holds trivially. If si is a tokenization of the substring cu p · · · p cv and sj
is a tokenization of the substring cu′ p · · · p cv′ , since i ≠ j it must be that either u < v < u′ < v′
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or u′ < v′ < u < v. But for all m = (r, i1, i2) ∈ [Ms]si it holds that u ≤ i1 < i2 ≤ v, and for all
m′ = (r′, j1, j2) ∈ [Ms]sj it holds that u′ ≤ j1 < j2 ≤ v′. Intuitively, it is not possible for a merge to
span two different subsequences si, sj in the partition of s, because then (part of) si and sj would be
merged.

3. Each merge m = (r, j, k) ∈ Ms, r ∈ R must have 1 ≤ j < k ≤ |σ|. Because the whole string σ is
tokenized into s and, by definition, the token merged by m cannot be part of two different subsequences
in the partition, there must exist si ∈ s that is a tokenization of a substring cu p · · · p cv of σ with
u ≤ j < k ≤ v. So by Definition 4, m ∈ [Ms]si .

Building up on Lemma 1, we show that BPE-based tokenizers are non-recovering.

Lemma 2. BPE-based tokenizers are non-recovering.

Proof. Assume that s p t is canonical. Then, there exists a unique merge sequence Mspt that creates it following
the BPE algorithm. From Lemma 1, Mspt can be split into [Mspt]s and [Mspt]t, where [Mspt]s contains the
merges that create s and [Mspt]t contains the merges that create t. From Lemma 1, there exists a merge
sequence Ms that creates s when applied to dec(s) and [Mspt]s

→≡ Ms. Because s is a prefix of s p t, the index
shift is zero and we have that [Mspt]s = Ms.

Since s tokenized according to [Mspt]s = (m1, . . . ,mn) is non-canonical, there must exist a different,
canonical tokenization s′ ̸= s of the same character string, dec(s) = dec(s′). Let Ms′ = (m′

1, . . . ,m
′
n′) be the

unique merge sequence that creates s′ from dec(s) according to the BPE algorithm. Because Ms′ ̸= [Mspt]s,
it must be that either there exists at least one i, i ≤ min(n, n′), such that mi ̸= m′

i, or mi = m′
i for all

i ∈ [min(n, n′)] but n ̸= n′.
We will first examine the first case. Let mi ∈ [Mspt]s and m′

i ∈ Ms′ be the first merges that are different
between [Mspt]s and Ms′ , meaning ∀j < i : mj = m′

j , for mj ∈ [Mspt]s, m′
j ∈ Ms′ . Because s′ is canonical

and s is not, it must be that m′
i ≺ mi. We will now compare Mspt, [Mspt]s and Ms′ . There are two sub-cases:

1. The first i merges in Mspt are the same as in [Mspt]s. This means that the first i− 1 merges are the same
as in Ms′ . Then, merge mi being applied instead of m′

i ≺ mi on substring dec(s), implies that Mspt
cannot be the merge sequence that creates the canonical tokenization of dec(s p t) according to BPE.

2. The first i merges in Mspt are not the same as in [Mspt]s. This means that there exists at least one
merge m ∈ Mspt among the first i merges in Mspt such that m /∈ [Mspt]s. For any such merge m, as
m /∈ [Mspt]s, it must hold that m ∈ [Mspt]t by Lemma 1. So, in Mspt, merge mi is preceded by the first
i− 1 merges of [Mspt]s and merge m. By Lemma 1, m does not affect the tokens that will create s, so
the only merges in Mspt before mi that affect s are the first i− 1 merges of [Mspt]s, which are the same
as Ms′ . Then, as in case 1, merge mi being applied instead of m′

i ≺ mi, implies that Mspt cannot be
the merge sequence that creates the canonical tokenization of dec(s p t) according to BPE.

We will now examine the case where mi = m′
i for all i ∈ [min(n, n′)], mi ∈ [Mspt]s, m′

i ∈ Ms′ but n ̸= n′.
If n > n′, then there exists at least one merge that can be applied on s′ after all merges of Ms′ are done,
which means that s′ cannot be canonical. If n′ > n, then there exists at least one merge that can be applied
on s after all merges of [Mspt]s are done. This merge can also be applied on s p t, which means that s p t
cannot be canonical.

All cases lead to a contradiction, which implies that s p t is non-canonical. We have shown that if s is
non-canonical then s p t is also non-canonical. Thus, BPE-based tokenizers are non-recovering.
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B.2 Unigram-based tokenizers are non-recovering.
Theorem 6. Unigram-based tokenizers are non-recovering.

Proof. If s is non-canonical according to Unigram, then let s′ denote the canonical tokenization of the same
character string, dec(s) = dec(s′). Because s′ is canonical, it must be that r(s′) > r(s). It follows that
r(s p t) = r(s)r(t) < r(s′)r(t) = r(s′ p t), so s p t cannot be the canonical tokenization of dec(s p t). We
have shown that if s is non-canonical then s p t is also non-canonical. Thus, Unigram-based tokenizers are
non-recovering.

B.3 Wordpiece-based tokenizers are non-recovering.
Theorem 7. Wordpiece-based tokenizers are non-recovering.

Proof. If s = t1 p · · · p tn is non-canonical according to Wordpiece, then let s′ = t′1 p · · · p t′n′ denote the
canonical tokenization of the same character string, dec(s) = dec(s′), n, n′ ∈ N. Because s′ ̸= s, there must
exist at least one i ≤ min(n, n′) such that ti ̸= t′i. It is impossible that ti = t′i for all i ∈ min(n, n′) but
n ̸= n′, because then dec(s) ̸= dec(s′), as one would be a prefix of the other. Let ti, t

′
i, with i ∈ min(n, n′)

be the first different token between s and s′, i.e., ∀j < i : tj = t′j but ti ̸= t′i. Since s′ is canonical, it must
be that |t′i| > |ti|, where |t| = |dec(t)| represents the size of token t based on how many characters in Σ it
encodes. Because s is a prefix of s p t, the first i tokens are the same, but s p t cannot be canonical because at
(token) index i there exists t′i ∈ V that encodes more characters than ti, |t′i| > |ti|. We have shown that if s
is non-canonical then s p t is also non-canonical. Thus, Wordpiece-based tokenizers are non-recovering.
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C Non-recoverability under Pretokenization
State-of-the-art LLMs use a tool called pretokenizer in order to split long strings into segments that can
be tokenized simultaneously and independent of each other. Formally, the pretokenizer is a function
pre : Σ+ → (Σ+)+, where (Σ+)+ represents sequences of strings in Σ+, such that for string σ ∈ Σ+,
pre(σ) = (σ1, . . . ,σn) where σ = σ1 p · · · p σn, n ∈ N. The encoder with pretokenizer can then be defined as
encpre(σ) = enc(σ1) p · · · p enc(σn), where enc : Σ+ → V + is an encoder based on the tokenization algorithm
used in conjunction with the pretokenizer. We extend the definition of canonical sequences to account for the
effect of the pretokenizer.

Definition 8. Let T = (Σ, V, encpre, dec) be a tokenizer and σ ∈ Σ+. A tokenization s ∈ V +, dec(s) = σ of
σ is canonical if s = encpre(σ), where enc(σ) = enc(σ1) p · · · p enc(σn) and pre(σ) = (σ1, . . . ,σn), n ∈ N.

Pretokenizers typically work by greedily matching prefixes of a string to a regular expression, splitting
when the prefix stops matching, and continuing with the remaining suffix. If string σ is a match, then
pre(σ) = σ, and if pre(σ) = (σ1, . . . ,σn), n ∈ N,σ ∈ Σ+ then pre(σi) = σi for all i ∈ [n]. Regular
expressions used by pretokenizers additionally satisfy a property called closed under prefix (Hayase et al.,
2025), though some exceptions apply related to handling whitespace and common english contractions.

Definition 9. A pretokenizer pre is closed under prefix if for any string σ ∈ Σ+ where pre(σ) = σ and
any prefix σ′ of σ, it holds that pre(σ′) = σ′.

In words, any prefix of a string that is a match to the regular expression is also a match, or equivalently, if a
string is not a match then no superstring of it is a match.

We show that tokenizers with pretokenization remain non-recovering when the pretokenizer is closed
under prefix.

Theorem 10. Let T = (Σ, V, enc, dec) be a non-recovering tokenizer and let pre be a pretokenizer closed
under prefix. Then, tokenizer T ′ = (Σ, V, encpre, dec) is non-recovering.

Proof. Let σ = σ1 p · · · p σn = dec(s), where pre(σ) = (σ1, . . . ,σn), σi = dec(si) for all i ∈ [n] and
s = s1 p · · · p sn, n ∈ N. Additionally, let σt = dec(t), so σ p σt = dec(s p t). By definition 9 and because t is
a single token, it must hold that either pre(σ p σt) = (σ1, . . . ,σn,σt) or pre(σ p σt) = (σ1, . . . ,σn p σt). For
each σi, it holds by definition that pre(σi) = σi, so encpre(σi) = enc(dec(si)).

By definition 8, for s to be non-canonical there must be at least one si where si ̸= encpre(dec(si)) =
enc(dec(si)), so si is non-canonical. As each substring σi is tokenized independently, if i < n, or if i = n and
pre(σ p σt) = (σ1, . . . ,σn,σt), then si is also part of s p t, so s p t is non-canonical. Alternatively, if i = n
and pre(σ p σt) = (σ1, . . . ,σn p σt), then because T is non-recovering, sn being non-canonical implies that
sn p t is also non-canonical, therefore s p t is non-canonical. In all cases, it holds that if s is non-canonical
then s p t is also non-canonical. Thus, tokenizer T ′ is non-recovering.
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D Proof of Theorem 3
Here, we provide the proof of Theorem 3, which we restate below.
Theorem 3. Let d be absolutely continuous with respect to p. Moreover, assume that there exist s ∈ V +

and t1, t2 ∈ V such that s p t1 is non-canonical with d(s p t1) > 0 and s p t2 is canonical with p(s p t2) > 0 and
d(s p t2) > 0. Then, it holds that

KL(p, d̃) < KL(p, d). (3)

Proof. Assume there exists ŝ ∈ V +, t1, t2 ∈ V such that ŝ p t1 is non-canonical and d(ŝ p t1) > 0 and ŝ p t2
is canonical and p(ŝ p t2) > 0 and d(ŝ p t2) > 0. Given any token sequence s ∈ V +, let ps = P [T |S = s]
be the true next token distribution and ds, d̃s be the next token distribution and canonicalized next token
distribution given by the LLM. Then, dŝ(t1 ) > 0. Then, we have that Z =

∑
t∈V : ŝpt is canonical dŝ(t) < 1. By

definition of d̃ŝ, this implies that for all t ∈ V such that d̃ŝ(t) > 0, we have that
d̃ŝ(t)

dŝ(t)
> 1 (4)

Note that, because ŝ is canonical (by Theorem 2 and because p(ŝ p t2) > 0) and d(ŝ) > 0, it implies that ŝ also
has positive probability under d̃, i.e., d̃(ŝ) > 0. In particular, by definition of d̃ we know that d̃(ŝ)/d(ŝ) ≥ 1
and thus using Eq. 4 it follows that for any t such that d̃ŝ(t) > 0, d̃(ŝ p t) > 0 and

d̃(ŝ p t)
d(ŝ p t)

=
d̃(ŝ)

d(ŝ)
· d̃ŝ(t)
dŝ(t)

> 1 (5)

We show that the difference in KL-divergence of p from d and p from d̃ is greater than zero. First, we rewrite
the difference as follows:

KL(p, d)− KL(p, d̃) =
∑
s∈V +

p(s) log

(
p(s)

d(s)

)
−
∑
s∈V +

p(s) log

(
p(s)

d̃(s)

)
=
∑
s∈V +

p(s)

[
log

(
p(s)

d(s)

)
− log

(
p(s)

d̃(s)

)]

=
∑
s∈V +

p(s) log

(
d̃(s)

d(s)

)
(6)

=
∑

s∈V +: d̃(s)>0

p(s) log

(
d̃(s)

d(s)

)
(7)

where the first equations follow from simple manipulations and Eq. 7 follows from the following argument.
Whenever d̃(s) = 0, it implies that either d(s) = 0 or that s is non-canonical. Both cases imply that p(s) = 0
(either by absolute continuity or non-canonicity). Whenever p(s) and d̃(s) are zero, the contribution of the
corresponding term in Eq. 6 is interpreted as zero because limx→0+ x log x = 0.

We can break up Eq. 7 into two types of summand. For any s ̸= ŝ p t, t ∈ V and d̃(s) > 0, it readily follows
from the definition of d̃s that

p(s) log

(
d̃(s)

d(s)

)
≥ p(s) log(1) = 0

For any s = ŝ p t, t ∈ V and d̃(s) > 0 and p(s) > 0, it follows from Eq. 5 that

p(s) log

(
d̃(s)

d(s)

)
> p(s) log(1) = 0

Thus, we can conclude that, as there exist t2 ∈ V such that p(ŝ p t2) > 0 and d̃(ŝ p t2) > 0,

KL(p, d)− KL(p, d̃) > 0.
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E Examples of Tokenization Multiplicity

You are a helpful assistant that translates English text to German. Please provide only the translated text.

2017 Italian Athletics Indoor Championships was the 48th edition of the Italian Athletics Indoor Championships and were held in 
Ancona.

Die 2017igen Italienischen Leichtathletik-Indoormeisterschaften waren die 48. Auflage der Italienischen Leichtathletik
-Indoormeisterschaften und fanden in Ancona statt.

54 tokens

56 tokens

Qwen2.5
7B-Instruct

Qwen2.5
7B-Instruct

Die 2017igen Italienischen Leichtathletik-Indoormeisterschaften waren die 48. Auflage der Italienischen Leichtathletik
-Indoormeisterschaften und fanden in Ancona statt.

(a)

Llama3.1
8B-Instruct

You are a helpful assistant that corrects typos. Please provide only the corrected text.

Mabas-Losmassès is a fsrmer commune in tue Gers depfrtment in nouthwertern Franbe. It wak merged into thj nef cwmmune Cap 
d'Astcrac ew 1 Tanuary 2025.

Mabas-Losmassès is a former commune in the Gers department in southwestern France. It was merged into the new commune Cap
d'Astarac as of 1 January 2025.

41 tokens

42 tokens

Llama3.1
8B-Instruct

Mabas-Losmassès is a former commune in the Gers department in southwestern France. It was merged into the new commune Cap
d'Astarac as of 1 January 2025.

(b)

You are a helpful assistant that rephrases text. Please provide only the rephrased text.

Liste des récompenses et nominations de Eddie Murphy, notamment pour ses performances d'acteur et musicales.

Énumération des distinctions et nominations d'Eddie Murphy, en particulier pour ses performances d'acteur et musicales.

23 tokens

24 tokens GPT-4o-mini

GPT-4o-mini
Énumération des distinctions et nominations d'Eddie Murphy, en particulier pour ses performances d'acteur et musicales.

(c)

Figure 5: Examples of tokenization multiplicity in (a) translation, (b) spell checking, and (c)
rephrasing. In each example, the top box shows the input prompt, which consists of an instruction of the
task and the accompanying Wikipedia text to be processed. The latter two boxes show two outputs generated
by (a) Qwen2.5-7B-Instruct, (b) Llama3.1-8B-Instruct and (c) GPT-4o-mini as a response to the input
prompt, corresponding to the same string but with two different tokenizations.
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You are a helpful assistant that translates English text to German. Please provide only the translated text.

Captain 2nd rank () is a rank used by the Russian Navy and a number of former communist states. The rank is the middle rank in 
the staff officer's career group. The rank is equivalent to lieutenant colonel in armies and air forces. Within NATO forces, the rank 
is rated as OF-4 and is equivalent to commander in English-speaking navies.
Russia.
Russian Empire.
The rank was introduced in Russia by Peter the Great in 1722. From the introduction of the Russian table of ranks to the 
abolishment in 1917 "Captain 2nd rank" was quoted to rank positioned VII, and until 1856 it was privileged by hereditary nobility. 
In the Russian Empire Navy it was the second highest rank of the stab-ofizer (derived from German "Stabsoffizier") career group.
Soviet Navy and Russian Federation.
The first equivalent rank in the Soviet Navy (from 1918 to 1935) was Starpom of the ship 1st rank, ().
This particular rank was introduced by disposal of the Central Executive Committee of the Soviet Union and the Council of People's 
Commissars, from September 22, 1935. The Red Army reintroduced the "Captain 2nd rank" rank in 1935, together with a number 
of other former Russian ranks, and it has been used in many ex-USSR countries, including Russia, to the present day.
Pertaining to Engineer aboard of war ships the equivalent rank designation in the Soviet Navy was Captain 2nd rank-engineer. Any
other naval personnel on-shore assignments (e.g. medical service, chemical defence, marines, and naval aviation) have been 
entitled "Podpolkovnik".
In the navy of the Russian Federation there are three ranks in the "staff officer´s" (until 1917: stab-ofizer, derived from German 
"Stabsoffizier") career group, which means:

GPT-4o-mini

Der Rang des Kapitäns 2. Ranges ist ein Rang, der von der Russischen Marine und einer Reihe ehemaliger kommunistischer 
Staaten verwendet wird. Der Rang ist der mittlere Rang in der Karrieregruppe der Stabsoffiziere. Der Rang entspricht dem 
Oberstleutnant in Armeen und Luftstreitkräften. Innerhalb der NATO-Truppen wird der Rang als OF-4 eingestuft und entspricht 
dem Kommandanten in englischsprachigen Marinen. 
Russland. 
Russisches Kaiserreich. 
Der Rang wurde in Russland von Peter dem Großen im Jahr 1722 eingeführt. Von der Einführung der russischen Rangtabelle bis 
zur Abschaffung im Jahr 1917 wurde "Kapitän 2. Ranges" als Rangposition VII zitiert und bis 1856 war er durch erbliches 
Adelsrecht privilegiert. In der Marine des Russischen Kaiserreichs war es der zweithöchste Rang der Karriergruppe der 
Stabsoffiziere (abgeleitet vom deutschen "Stabsoffizier"). 
Sowjetische Marine und Russische Föderation. 
Der erste gleichwertige Rang in der Sowjetmarine (von 1918 bis 1935) war Starpom des Schiffes 1. Ranges. 
Dieser spezifische Rang wurde durch Beschluss des Zentralen Exekutivkomitees der Sowjetunion und des Rates der 
Volkskommissare ab dem 22. September 1935 eingeführt. Die Rote Armee führte den Rang „Kapitän 2. Ranges“ im Jahr 1935 
wieder ein, zusammen mit einer Reihe anderer ehemaliger russischer Ränge, und er wird bis heute in vielen ehemaligen 
Sowjetländern, einschließlich Russland, verwendet. 
In Bezug auf Ingenieure an Bord von Kriegsschiffen war die gleichwertige Rangbezeichnung in der Sowjetmarine Kapitän 2. 
Ranges-Ingenieur. Alle anderen Marineangehörigen, die an Land eingesetzt waren (z.B. Sanitätsdienst, chemische Verteidigung, 
Marineinfanterie und Marinefliegerei) wurden als "Podpolkovnik" bezeichnet. 
In der Marine der Russischen Föderation gibt es drei Ränge in der Karrieregruppe der "Stabsoffiziere" (bis 1917: Stabsoffiziere, 
abgeleitet vom deutschen "Stabsoffizier"), was bedeutet:

GPT-4o-mini

Kapitan 2. Ranges () ist ein Rang, der von der russischen Marine und einer Reihe ehemaliger kommunistischer Staaten 
verwendet wird. Der Rang ist der mittlere Rang in der Karrieregruppe der Stabsoffiziere. Der Rang entspricht dem 
Oberstleutnant in Armeen und Luftstreitkräften. Innerhalb der NATO-Truppen wird der Rang als OF-4 eingestuft und 
entspricht dem Kommandeur in englischsprachigen Marinen.
Russland.
Russisches Kaiserreich.
Der Rang wurde in Russland von Peter dem Großen im Jahr 1722 eingeführt. Von der Einführung der russischen Rangordnung 
bis zur Abschaffung im Jahr 1917 wurde "Kapitan 2. Ranges" dem Rang VII zugeordnet und bis 1856 war er mit erblichem Adel 
privilegiert. In der Marine des Russischen Kaiserreichs war es der zweithöchste Rang der Karrieregruppe der Stabsoffiziere
(abgeleitet vom deutschen "Stabsoffizier").
Sowjetmarine und Russische Föderation.
Der erste gleichwertige Rang in der Sowjetmarine (von 1918 bis 1935) war Starpom des Schiffes 1. Ranges, ().
Dieser spezielle Rang wurde durch eine Verfügung des Zentralen Exekutivkomitees der Sowjetunion und des Rates der 
Volkskommissare am 22. September 1935 eingeführt. Die Rote Armee führte den Rang "Kapitan 2. Ranges" 1935 wieder ein, 
zusammen mit einer Reihe anderer ehemaliger russischer Ränge, und er wird in vielen ehemaligen Ländern der UdSSR, 
einschließlich Russland, bis heute verwendet.
Für Ingenieure auf Kriegsschiffen war die gleichwertige Rangbezeichnung in der Sowjetmarine Kapitan 2. Ranges-Ingenieur. 
Alle anderen Marineangehörigen in Landeinsätzen (z.B. Sanitätsdienst, chemische Verteidigung, Marineinfanterie und 
Marinefliegerei) wurden als "Podpolkovnik" bezeichnet.
In der Marine der Russischen Föderation gibt es drei Ränge in der Karrieregruppe der "Stabsoffiziere" (bis 1917: Stabsoffizier, 
abgeleitet vom deutschen "Stabsoffizier"), was bedeutet:

Non-canonical

Canonical

Figure 6: Example of tokenization multiplicity in long, similar outputs. The top box consists of a
translation instruction and the accompanying Wikipedia text to be translated. The latter two boxes show
two outputs generated by gpt-4o-mini as response to the input prompt, corresponding to the similar strings
but with two different tokenizations for the word “Stabsoffiziere".
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F Additional Experimental Details

Hardware setup. Our experiments using open-weights models are executed on a compute server equipped
with 2 × Intel Xeon Gold 5317 CPU, 1,024 GB main memory, and 2 × A100 Nvidia Tesla GPU (80 GB,
Ampere Architecture). In each experiment a single Nvidia A100 GPU is used.
Datasets and languages. As input texts for our experiments on the translation, spell checking and
rephrasing tasks, we used articles from the most recent Wikipedia dumps14 as of December 3rd 2025 in
different languages. See Table 2 for a full list of languages and the shortened names used in our plots in
section 3 and Appendix G. We extracted plain text from the articles using the wikiextractor tool15 and
sampled 100 articles from each language with length between 30 and 300 characters. For the experiment
with longer outputs at the end of section 3, we sampled 100 articles in the english language with length
between 1000 and 3000 characters. For the spell checking task, we randomly replaced, with probability 10%,
lowercase latin characters in the input with a random different lowercase latin character. Additionally, for the
experiments on the MGSM task in section 4.3 we used the MGSM benchmark (Shi et al., 2023), consisting of
250 grade-school maths problems translated in different languages, but we only considered languages in latin
script. The reason our experiments are solely focused on languages using the latin script is that for most
non-latin scripts tokens very often encode at most one character, therefore many, if not all, output strings
cannot be generated under multiple tokenizations.
Models and parameters. Table 3 lists the models used in our experiments, as well as the shortened names
used in our results in sections 3, 4.3 and Appendix G. All inferences were performed with temperature set to
1.0. The system prompts used in the MGSM task were adopted from an open-source evaluation library16,
which uses a 0-shot chain-of-thought prompting technique, while the system prompts for the other tasks are
shown in Tables 4, 5, and 6. For gpt-5-mini, we used the minimum reasoning setting and subtracted from
the output token count any reasoning tokens that are not visible to the user.
API details. To investigate tokenization multiplicity in proprietary models, we used the publicly available
official API services from OpenAI, Google, and Anthropic. Further, to measure the canonicity of an output,
its tokenization must be disclosed by the API and a tokenizer must be publically available.17 However, the
API services for gpt5m, gemini and claude return only the output string and number of generated tokens,
without disclosing the exact tokenization. For these models, we can identify some cases of non-canonicity,
when the number of generated tokens does not match the number of tokens in the canonical tokenization.
Reproducibility. We have released all code and data required to reproduce our results at the following
repository: https://github.com/Networks-Learning/Tokenization-Multiplicity. However, the exact outputs
of the proprietary models are not always reproducible. Specifically, the API services for gemini, claude
and gpt5m do not allow setting a random seed for deterministic outputs, while for gpt4om and gpt4.1
setting a random seed is possible but the output is deterministic only if it is accompanied by the same
system_fingerprint field, which cannot be controlled by the user. Therefore, we have included in the
repository all outputs from these models where we observed tokenization multiplicity, and believe that one
can obtain qualitatively similar results by running our code.

14https://dumps.wikimedia.org/
15https://github.com/attardi/wikiextractor
16https://github.com/openai/simple-evals/blob/main/mgsm_eval.py
17OpenAI provide a public tokenizer: https://github.com/openai/tiktoken

26

https://github.com/Networks-Learning/Tokenization-Multiplicity
https://dumps.wikimedia.org/
https://github.com/attardi/wikiextractor
https://github.com/openai/simple-evals/blob/main/mgsm_eval.py
https://github.com/openai/tiktoken


Full name Shortened name

German de
French fr
Portuguese pt
English en
Turkish tr
Swahili sw

Table 2: Languages used in our experiments.

Full name Shortened name

Llama-3.1-8B-Instruct Llama8B
Qwen2.5-7B-Instruct Qwen7B
gpt-4o-mini gpt4om
gpt-4.1 gpt4.1
gpt-5-mini gpt5m
gemini-2.5-flash-lite gemini
claude-3-haiku-20240307 claude

Table 3: Models used in our experiments.

System: You are a helpful assistant that translates LANG-1 text to LANG-2. Please provide only
the translated text.

Table 4: System prompt used for the translation task. LANG-1 and LANG-2 correspond to full names of
languages from Table 2.

System: You are a helpful assistant that corrects typos. Please provide only the corrected text.

Table 5: System prompt used for the spell checking task.

System: You are a helpful assistant that rephrases text. Please provide only the rephrased text.

Table 6: System prompt used for the rephrasing task.
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G Additional Experimental Results

G.1 Additional Experimental Results on Tokenization Multiplicity
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(a) German
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(b) French

Figure 7: Probability of tokenization multiplicity and magnitude of price variation for tasks in
the (a) German and (b) French languages.
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(a) Portuguese
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Figure 8: Probability of tokenization multiplicity and magnitude of price variation for tasks in
the (a) Portuguese and (b) English languages.
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(a) Turkish
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(b) Swahili

Figure 9: Probability of tokenization multiplicity and magnitude of price variation for tasks in
the (a) Turkish and (b) Swahili languages.
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Figure 10: Tokenization multiplicity across languages. The plots show the number of inputs prompts
for which we observe at least two outputs given by each LLM with the same string but different tokenization
lengths. Each row corresponds to a different LLM, panels corresponds to one of the three tasks we consider
in our experiments and pairs of letters on the x-axis correspond to different languages.
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Figure 11: Percentage of non-canonical outputs from LLMs that disclose the tokenization. The
plots show the percentage of outputs whose generated tokenization does not match the canonical tokenization
of the same string. Each row corresponds to a different LLM, panels corresponds to one of the three tasks we
consider in our experiments and pairs of letters on the x-axis correspond to different languages.
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Figure 12: Percentage of non-canonical outputs (lower bound) from LLMs that do not disclose
the tokenization. The plots show the percentage of outputs whose generated tokenization length does
not match the canonical tokenization length for the same string. Each row corresponds to a different LLM,
panels corresponds to one of the three tasks we consider in our experiments and pairs of letters on the x-axis
correspond to different languages.
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Figure 13: Tokenization multiplicity in the translation task from German to other languages.
The top row shows the probability of tokenization multiplicity, the middle row shows the magnitude of price
variation, and the bottom row shows the number of inputs where we observed tokenization multiplicity. Each
column corresponds to a different target language.
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Figure 14: Tokenization multiplicity in the translation task from French to other languages. The
top row shows the probability of tokenization multiplicity, the middle row shows the magnitude of price
variation, and the bottom row shows the number of inputs where we observed tokenization multiplicity. Each
column corresponds to a different target language.
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Figure 15: Tokenization multiplicity in the translation task from Portuguese to other languages.
The top row shows the probability of tokenization multiplicity, the middle row shows the magnitude of price
variation, and the bottom row shows the number of inputs where we observed tokenization multiplicity. Each
column corresponds to a different target language.
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Figure 16: Tokenization multiplicity in the translation task from English to other languages.
The top row shows the probability of tokenization multiplicity, the middle row shows the magnitude of price
variation, and the bottom row shows the number of inputs where we observed tokenization multiplicity. Each
column corresponds to a different target language.
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Figure 17: Tokenization multiplicity in the translation task from Turkish to other languages.
The top row shows the probability of tokenization multiplicity, the middle row shows the magnitude of price
variation, and the bottom row shows the number of inputs where we observed tokenization multiplicity. Each
column corresponds to a different target language.
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Figure 18: Tokenization multiplicity in the translation task from Swahili to other languages. The
top row shows the probability of tokenization multiplicity, the middle row shows the magnitude of price
variation, and the bottom row shows the number of inputs where we observed tokenization multiplicity. Each
column corresponds to a different target language.
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G.2 Additional Experimental Results on Canonical Generation

Language Metric Llama8B Qwen7B

Standard Canonical Standard Canonical

German
Quality score 0.72± 0.02 0.70± 0.02 0.73± 0.01 0.71± 0.01
Time per token (s) 0.019 0.020 0.018 0.019
Non-canonicity rate 6.1% - 17.6% -

French
Quality score 0.76± 0.02 0.74± 0.02 0.78± 0.02 0.76± 0.02
Time per token (s) 0.020 0.020 0.018 0.018
Non-canonicity rate 3.5% - 8.6% -

Portuguese
Quality score 0.72± 0.03 0.70± 0.03 0.78± 0.02 0.76± 0.02
Time per token (s) 0.020 0.020 0.018 0.018
Non-canonicity rate 3.9% - 10.0% -

Turkish
Quality score 0.57± 0.02 0.57± 0.02 0.61± 0.02 0.60± 0.01
Time per token (s) 0.020 0.020 0.018 0.019
Non-canonicity rate 27.6% - 44.4% -

Swahili
Quality score 0.60± 0.01 0.59± 0.01 0.43± 0.01 0.43± 0.01
Time per token (s) 0.022 0.020 0.018 0.019
Non-canonicity rate 18.6% - 37.2% -

Table 7: Performance, (generation) time per token, and non-canonicity rate on the translation
task. The results comprise pairs of outputs generated with standard and canonical generation in all languages
under the same source of randomness. For the time per token, confidence intervals were all smaller than 10−4.

Language Metric Llama8B Qwen7B

Standard Canonical Standard Canonical

German
1 − edit distance 0.62± 0.04 0.61± 0.04 0.74± 0.02 0.72± 0.02
Time per token (s) 0.019 0.023 0.018 0.018
Non-canonicity rate 10.4% - 19.0% -

French
1 − edit distance 0.65± 0.04 0.64± 0.04 0.77± 0.02 0.76± 0.02
Time per token (s) 0.019 0.022 0.018 0.018
Non-canonicity rate 11.8% - 18.4% -

Portuguese
1 − edit distance 0.81± 0.03 0.72± 0.04 0.80± 0.02 0.76± 0.02
Time per token (s) 0.020 0.022 0.018 0.019
Non-canonicity rate 11.9% - 16.8% -

English
1 − edit distance 0.69± 0.06 0.68± 0.06 0.85± 0.02 0.83± 0.02
Time per token (s) 0.019 0.020 0.018 0.019
Non-canonicity rate 5.5% - 8.6% -

Turkish
1 − edit distance 0.63± 0.03 0.62± 0.03 0.70± 0.02 0.68± 0.02
Time per token (s) 0.020 0.020 0.020 0.019
Non-canonicity rate 26.8% - 33.4% -

Swahili
1 − edit distance 0.69± 0.03 0.68± 0.03 0.74± 0.02 0.74± 0.02
Time per token (s) 0.020 0.020 0.021 0.019
Non-canonicity rate 17.4% - 19.4% -

Table 8: Performance, (generation) time per token, and non-canonicity rate on the spell checking
task. The results comprise pairs of outputs generated with standard and canonical generation in all languages
under the same source of randomness. For the time per token, confidence intervals were all smaller than 10−4.
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Language Metric Llama8B Qwen7B

Standard Canonical Standard Canonical

German
Cosine similarity 0.84± 0.02 0.84± 0.02 0.89± 0.02 0.88± 0.02
Time per token (s) 0.020 0.020 0.018 0.020
Non-canonicity rate 5.7% - 4.9% -

French
Cosine similarity 0.90± 0.02 0.90± 0.02 0.93± 0.02 0.92± 0.02
Time per token (s) 0.019 0.021 0.018 0.020
Non-canonicity rate 2.2% - 3.7% -

Portuguese
Cosine similarity 0.92± 0.02 0.91± 0.02 0.96± 0.01 0.96± 0.01
Time per token (s) 0.020 0.020 0.018 0.019
Non-canonicity rate 2.2% - 3.0% -

English
Cosine similarity 0.93± 0.03 0.90± 0.04 0.96± 0.02 0.96± 0.02
Time per token (s) 0.019 0.020 0.018 0.020
Non-canonicity rate 0.2% - 0.7% -

Turkish
Cosine similarity 0.87± 0.01 0.88± 0.01 0.91± 0.01 0.90± 0.01
Time per token (s) 0.020 0.020 0.019 0.019
Non-canonicity rate 17.0% - 17.0% -

Swahili
Cosine similarity 0.85± 0.01 0.85± 0.01 0.85± 0.01 0.84± 0.01
Time per token (s) 0.022 0.020 0.018 0.020
Non-canonicity rate 10.3% - 18.0% -

Table 9: Performance, (generation) time per token, and non-canonicity rate on the rephrasing
task. The results comprise pairs of outputs generated with standard and canonical generation in all languages
under the same source of randomness. For the time per token, confidence intervals are not shown, as they
were all smaller than 10−4.

Language Metric Llama8B Qwen7B

Standard Canonical Standard Canonical

German
Accuracy 0.37± 0.06 0.37± 0.06 0.63± 0.05 0.62± 0.06
Time per token (s) 0.020 0.020 0.018 0.020
Non-canonicity rate 22.3% - 29.4% -

French
Accuracy 0.51± 0.06 0.50± 0.06 0.22± 0.15 0.22± 0.15
Time per token (s) 0.020 0.020 0.019 0.019
Non-canonicity rate 13.0% - 0.6% -

English
Accuracy 0.47± 0.09 0.47± 0.09 0.86± 0.12 0.86± 0.13
Time per token (s) 0.020 0.020 0.019 0.019
Non-canonicity rate 4.2% - 0.7% -

Spanish
Accuracy 0.57± 0.06 0.56± 0.06 0.58± 0.07 0.58± 0.07
Time per token (s) 0.020 0.020 0.019 0.019
Non-canonicity rate 14.1% - 5.2% -

Swahili
Accuracy 0.31± 0.05 0.32± 0.05 0.13± 0.03 0.13± 0.03
Time per token (s) 0.021 0.020 0.018 0.019
Non-canonicity rate 32.7% - 42.5% -

Table 10: Performance, (generation) time per token, and non-canonicity rate on the MGSM task.
The results comprise pairs of outputs generated with standard and canonical generation in all languages
under the same source of randomness. For the time per token, confidence intervals are not shown, as they
were all smaller than 10−4.
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